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For the important special ca e arising when one takes for some

m < n , c = . . . c =~~~~and C , “ , C = O ; F = ‘ - = F  = Fni run m nrn+1 nfl ni nan

and F
1 

= ‘‘ = F~~~ = G , Chernoff-Savage ( 1958) obtained the asymptotic

normality of S~ with some restrictions on the growth rates of the first

two derivatives of ~~ . The same results have since been proved by

Govindarajulu-Le Cam-Raghavachari (1966) and Purl-Sen (1971) with milder

conditions on p. A far-reaching generalization of these results is due

to Hâjek ( 1968) . In a remarkable paper , Pyke-Shorack (1968) provided an 
—*

alternative approach to the Chernoff-Savage theorems by considering the
• sac

weak convergence of a two sample empirical process to a Gaussian process. 
~~~~~~

This approach has had a very significant impact on research practices in : ..

the area of rionparametric statistics and there now exists a substantial ~ “ 

body of literature devoted to stochastic processes arising in such pro-. 
~~~~~ _____

blems . In saite of this , however , techni ques of neither the Pyke-Shorack

kind nor of the Chernoff-Savage kind have been applied to problems of the 
___________

regression type . The method of attack for such problem has for the most

part been along the lines of Hajek ( 1968) , Purl-Sen ( 1969), Hoeffding ( 1973) ,

to name a few , We have been able to obtain results of the type given in

H~.jek ( 1968) both by the Chernoff-Savage approach and by a method involving

convergence of certain stochastic processes . The latter is given in this

paper; the former , together with some results on convergence rates is

published separately. (See Puri-Rajaram (1977).)

As is well known , the class:ical weak convergence method,to be found ,

for e~~u~p1e, in Biiiingsley (1968) or Pyke-Shorack ( 1968) generally entail

securing certain bounds on the sample path fluctuations of the processes

involvt.~d, usually with the help of certain refined metrics. If the distri-

butions are allowed to vary a gr eat deal , any analysis of the sample paths

can become extremely involved. Further, unlike stat istics of the

~ 

_ _ _ _  _ _
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• Kolriiogor ov-smirnov type which are ~easures of the maximum sample path

fluctuation, statistics of the reLTession type are weighted sums

involving ranks and. any sample path behavior as such is not directly

relevant. Taking these factors into consideration, we have adopted an

approach which uses only the second order properties of the processes

involved, thus cir cumventing the need for sample path analysis.

It is well known that a second order process, that is to say a

stochastic process X(t) whose variance K(t, t) is finite for all values of

t , spans a reproducing kernel Hu bert space with kernel K(s , t)

Cov(X(s ) ,  X ( t ) ) .  We exploit the fact that linear rank statistics can be

approximated by elements of the Hu bert space spanned by sui tably defined

empirical processes . In general , such a Hu bert space does not

characterize the process spanning it completely. However , the spanning

process if Gaussian , is completely determined by its Hilbert space . We

establish the asymptotic normality of linear rank statistics by proving

their convergence to a point in the Hu bert space spanned by a Gaussian

process. Integrals of th~ type considered here are used in a wide range

of applications; Parzen ( 1958), for example , has used them in his basic

work in time series analysis . But the application given here for a pro-

blem in nonp arametric statistics appears to be new . Brown ( 1970) has

some interesting results on convergence in distribution of stochastic

integrals. The basic reference on reproducing kernel Hilbert spaces is

Aronszajn (1950). Yosida (1972) also has useful results on reproducing

kernels.

Our condit ions on the score generating functions are the same as

those in Purl-Sen (1971), being somewhat stronger than those of H~jek ( 1968)

but less stringent than in Chernoff-Sava~e (1958). However, the centering

A TT~TTTTT T.T TITE IITI. Ti
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in addition to being easier to con~ ute, serves to unify the results of

H&jek (1968) and Hoeffding (1973). We also examine the asymptotic degeneracy

of S
n 
and in this respect our results extend both the 1i~jek and the

Chernoff-Savage, Purl-Sen results.

2. Definitions and Terminology.

Let X 1, X 2, “
, X~~ be a sequence of independent random variables

with continu ous distribution functions Fni~ 
F~2~ “

, F respectively.

L e t R . be the rank o fX .  among (X , ~~, X ) , that is
ru ni nfl

(number of X . . ) ;  j= 1, “ , n.nj  nj— ni

We define a simple linear rank statistic by

(2.1) S = 

i~1 
c a(R .)

where, (Cr1, “~~ 
C~~)~ (a~ (i) ,  • . .

, an(n)) 
are known constants, C . being

known as regression constants and a (i) as scores~ One usually assumes

a (i) to be generated by a known real-valued function defined on (0, i)

in either of the following ways:

(2.2) (a) a (l) = cp (—
~-i
); (b) a~(i) = E

(u) . .
where U is the ith order statistic among n independent random variables

distributed uniformly over (0, 1). We shall assume (2.2) (a), namely,

a (i) = p(~~~ ) .  Extension to case (b) can be done in one of the several

ways but has little to do with the techniques developed in this paper and

need not concern u~ • Thus, by (2.2) (a), we can write S as

U R .
(2.3) Sn = .~~ Crl~ p(

~~~
) .

1=1

For a fixed x, we define the empirical distribution function

H (x) for the sample X
1, ~~~~~~~ X~~ , by

.

~ 

~~~~ .. .. .,~~ 

- -
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(2.4) H (x) = ~ ~~~

‘ I(X i <x)

where the “indicator function” i( ) is defined by

(2 .5) I(X . < x ) = l i f X . < x
flu— n i—

= 0 if X . > x .flu

We also define the combined sample distribution function by

(2.6) F (x) = H(x) ~ ~ F .(x)

For the spec ial case , m < ii

C = •
~~~= C  =~~

:, C ••~~~~C = 0ni am m nm+l an

F = ‘ ‘ = F  = F , F = “ = Fni am nm+ 1 nfl

Pyke-Shorack (1968) consider the two-sample -emp irical process defined by

(2.7) L (t) = ~fn (F (H~~(t)) - F(H~~(t)))

where F (x) is the empirical distribution function corresponding tD the

sample (X~~~, ~~
“
, X~~ ) .  They obtain the asymptotic normality of S

‘rresponding to the two sample cases ( the Chernoff-Savage theorem) by

proving the weak convergence of L~( t )  to a Gaussian process and also its

convergence in some refined metrics . Thus for the general regress ion case ,

that is, when S~ is defined by (2.1) or (2.3) , it is natural to consider

the process defined by

(2 .8) L
~~~

(t) = 

i~ l 
C~1 

Ci(x ~1 ~~ H~~(t)) -

Unfortunately this process is much too complex and classical weak conver-

gence methods entail a detailed study of the sample path fluctuations of

the pr ocess . Hence , we will avoid this by basing our approach on the

second order behavior.

_ _ _ _ _ _  -~~~~-~~~~~~~~ -- - - -~~~-~~~~~~ - - - - -
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3. Stochastic Integrals of ~c~cond Order Stochastic Processes.

Let (X(t): t E T) be a real-valued second order stochastic process

with the kernel K(s, t) E [X(s) X(t)]. Let (Y(t): t E T) be another real-

valued second order stochastic process with the kernel R(s, t) = E[Y(s) y(t)3.

We always assume that T is an interval on the real line.

Let T = [a, b] where a <b are real numbers. We define the second

order stochastic integral of x(t) with respect to Y(t) as follows . We

follow essentially Lo~ve (1963).

Let D : a= t < t  < • • ~~ < t  = b.T 1 2 n+1

Def ine the random step function

(3.1) 1T ~~T
d y(t) = 

~ 
X
k 
(Y(tk l ) 

- Y(t
k

))

where

= x(t~), tk <.t1; < tk l

Then the stochastic integral -(second order) of X ( t )  with respect

to Y(t) is defined by

(3.2) J’ x(t) d y(t) = 1.i.m. $ X~ (t) d Y(t)T max It k+l
tk H° T T

- 1<k<n

if it exists, where l.i .m. means limit in the quadratic mean.

Often we will need to define it as an improper integral on T = (a,b).

Then we take T’ = [a ,~~], a < a < ~ < b and first define as before

(3.3) 
1T ’ 

x(t) d Y(t)

and then define the improper integral

(3. 4) 
~T 

X(t) d y(t) = 

~T’ 
X(t) d Y(t)

if it exists.

_ _ _ _ _ _ _  --—.-—~~~---- --— - -- _ _ _ _ _ _
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Remark 1. These integrals a pend on the “increment s” of y(t) and

not directly on y(t) itself.

The following theorem ensures the existence of such an integral.

Theorem 3.1. Let the second order stochastic process X(t) with the

kernel K(s, t) be independent 2~ ~~~ 
“increments” of the second order process

Y(t) with the kernel R(s, t). Then the stochastic integral $ x(t) d y(t)
T

exists in the rank of (3.2) (or (3.4)) if and only if

~

‘

T ‘T 
K(s, t) d12 R(s, t)

exists as a Riemann-Stieltjes (perhaps imnroper) integral. 1:
Proof. See Lo€cve ( 1963) .

Remark 2. Very often in applications, Y(t) will be a nonrandom

function g(t). Then theorem 3.1 reduces to the following

Corollary 3.2. The stochastic integral $ X(t) d g(t) exists if

~ S~ ~T 
K(s, t) d g(s) d g(t) exists as a Rieinann-Stieltjes

(perhap s improper) integral.

Proof. Immediate from theorem 3.1.

The following property of Gaussian processes proves very useful.

Theorem 3.3: If Y( t )  is a nonrandom function integration of a

Gaussian process with respect to Y(t) preserves normality.

Proof. See Lo~ve (1963).

4. Second Order Properties of Wci~ ht-ed Empirical Processes.

Let X 1, X 2, ~~~~~ 
Xan~ ~~

.. be independent random variables with

the corresponding distr ibution functions F~1, F 2, ~~~ 
F~~, which

are continuous. We define

- ~~~-— -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~~~~~~~~~~~~ -— -~~~ -~~~--—~~~~
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(4 .1) F = 2- ’~~~F . .
ii n . 1  ni

Let C , ~~~~~~~ C be known constants . We shall investigate theni an

second order properties of the two processes,

(4 .2) Xn(t)  = ~~
.- E (I(x~ <F~~(t)) - F.(F

1 
(t)))

= 
1 

~ (I(X . < F 1
(t) - t). -

~~~ i=l 
nu— n

(4 .3) Y (t)  = ~~ E Cnj (I(X~~ 
< F~~(t)) - F .(F ’(t))), 0< t < 1,

n i=1

where S > 0 is a normalizing constant and i( ) is defined by,

1 if y >  X
(4.4) I(X~1 < y) = 

— nu

0 otherwise.

The process x~(t) is, of course, the well known empirical process

and has been extensively studied. We shall closely study the process

Y~(t). The process Y~(t) as well as the process Ln,c(t) defined in (2 .8)

have been considered by Koul (1970) and Koul and Sta~dte (1972) respectively.

Our approach, however, is significantly different.

Lemma 4.1: E X (t) = E Y~(t) = 0

(4.5) E[X (s) x (t)J = K(s , t) 
n

= S 
~~ 
t - 

~ 

F .(F
1 
(s)) . F .(F~~(t))

(4.6) E( Y~(s) Yn(t)] = R~(s, t)

= ~~ E C
2
.(F .(F~~(s)) A F .(F~~(t)) - F .(F~~(s)) F .(F~~(t)))

5 i=ln
where for any two real numbers a and b, a A b = mm (a, b).

_ _ _ _ _
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Proof. Proof of E X (t) = E Y et )  = 0 is obvious. Further (4.5) is

a special case of (4.6) and hence i~ suffices to prove the latter alone.

Without loss of generality let s < t. Let u = F 1
(s) < v = F

1( t ) .

Then we have

Yn(5)Yn
( t )  = ~~ c~1C~~ (I ( X~1 ~ u) - F

ni(U))[I(Xnj ~ v) 
- F~~(v)))

S i,j=1a

= 

i~l 
C
2
.(1(X . < u) - F .(U))(I(X ~ v) - F . (V ) )

+ ~ C~~C .  (i(x . <u) - F .(u)) (I(X . <v) - F .(v)).
S ulja

On taking expectations, the expectation of the second sum vanishes and

is the first sum

E[[I(X . <u) - F~~(u))(I(X~~ <v) - F .(v))]

= F .(u) A F .(v) - F .(u) F .(v).

This establishes (4.6). 
f l u  flu

Next we examine the La-convergence of the processes Yn(t)•

Definition. A sequence y (t) of second order processes converges in

to another (second order) process Y(t) if and only if

111 (t) - Y(t) l~ = (Var (Y (t) - y(t)))h/2 ~ 0

as n -± + ~~~~, for each t .

We then write

Y~(t )  — > y( t)

or

IIY~
(t) - Y(t)11 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ -- - -~~~~~~~~~ -~~-~~~~~~~ 
.
~ 
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- . We next obtain criteria for J~ eonvergence of the processes Y (t) -

defined in (4.3) .

Theorem 4.2. The second order ~~~~esses Y~(t) with R (t) as their

kernel (defined by (4.3) and (4 .6) respectively) converge to a second order
process Y(t) if and o~~~ if , for each t,

(4.7) lim ~ E (E 2~ c .C . [I(X . <F~~ ( t ) )  - F . (F ’( t ) ) J
m-.+~ n m  i= l j=l

x [i(x . < F 1
(t)) -

= f(t) exists~

Further, if (4.7) holds, the kernel of Y(t) is given by

(4 .8) E(Y(s) Y(t)] = R(s, t) = u r n  R (s, t).

In statistical applications, we have a continuous sampling situation;

that is to say if m < n, we have, X X , ~~~~~~~ X = X . Then the above
— nl ml am am

theorem becomes a more precise

Corollary 4.3. Let n > rn and the sequences be such that ,

X . = X ., j  < m. Then the process 1 (t) defined as before converges to anJ nJ — n — _ _ _ _  _ _ _ _ _  
— —

proces-~ Y(t) with kernel R(s , t) = u r n  R (s, t) if and only if
fl—cx~

(4.9) lim s ~ ~ 
C XC .  (F .(F

1
(t)) A F .(F 1

(t))
a m i=l

- F
~~
(F;

1
(t)) F~.(F

’(t)))

exists and is finite for each t.

Theorem 4.2 is proved by a direct application of theorem A , page 469
of Lo~ve (1963). Therefore , we shall only prove corollary 4.3.

~

-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~ - - -  ~~~~~~~-~~~ - -——~~~~~~~~~— -—-~ —~~~~~~~- ~~~——— — — —
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Proof of Corollary 4 .3. Note T hat by the hypothesis ,

F = F  , F = F  , m < n . Lut F = 1 EF . and F =~~~ Z~ F .ni ml ‘ nih mm — 
~~ ~ 1 flu m m i i

could be different. Also, C . may not equal C . and s and s could also
~~ii ‘ a  m

be different.

In order to simplify the notation, we shall write u = F~~(t) and

v =  F
1
(t). Then

(4.10) y (t) Y (t)

= —i-- 
~ C .C (I(X . <u) - F .(u))(I(X . <v) - F .(v))S 5  

l<i<n 
flu ~~ flu — fli SLJ — flJ

l<j<m

= 
1 

E C . C . ~i(X . <u) - F .(u))(I(X . <v) - F .(v))s S flu mu flu — flu Ifl]. — mufl m u=l

+ ~ C .C . (I(X . <u) - F .(u))(I(X . <v) - F .(v))
sS  flu m.,j flu — nu mj —

where we have used the fact that X . X . and F . = F . for i < m.
flu ~~ flu mu —

Observe that :

(1) When I ~( j ,  I(X . < .) and i(X . < ~~) 
are independent. Hence

E([I(Xni < u) 
- F .(u)] [i(X . < v) - F .(vfl) = 0.

(ii) ‘~Then i =

(4.11) [i(X~~ < u) - F .(u)] [I(x . < v) - F .(v)]

= I(X . <u) i(X . <v) - F  .(v) i(X . <u)f l u —  nu— f l u  ni—

= F .(u) i(X . <v) -i- F .(u) F .(v).
ni flu —  ni flu

in (4.11) for the first term,

E(I(X . < u) i(X . < v)) = F .(u A v) = F .(u) A F .(v).

Taking expectations in (4.11), we get 

~~-—-~~— •~~~~~~ -- ~~- - - ~~~-- ~~~~~~~
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(4.12) E({I(X . < u )  - F .(u)]HX . < v )  - F .(v)])

= F . ( u )  A F . (v )  - F .(u )  F .(v)

= F~~(F~~(t))  A F~~ (F~~ ( t ) )  - F .( F~~(t)) F .(F~~(t)).

Thus by taking expectations of ( 4 .10) and substit uting (4 . 12) and ( i )  we

get the expression in (4.9). An application of theorem 4.2 proves the

corollary.

5. Limit Distributions of the Processes X (t) and Y (t).

Since X (t) is a special case of 1 (t), it suffices to establish - the

results for the latter . We have the following theorem:

Theorem 5.1. For the processes 1 (t), let

(1) conditions of theorem 4.2 (or of corollary 4 .3) hold; and let

(ii)(max I C . I ) s  = O(-~--).
1<i n flu fl 

~4 f l

Then y (t) > Y(t)  where Y ( t )  is Gaussian with the kernel

R(s, t) = limR (s, t).

Proof. Ia-convergence arid the convergence of the kernels are immediate

consequences of condition (i). It suffices to prove the asymptotic normality

of the finite dimensional distributions of Y ( t ) .

Let t1, t2, ~~~~~~~~ 
tk be any fixed elements in T. Consider the random

vector (y (t1), ~~~~~~~~~ 
Yf l (tk) ) .

We use the Cramer-Wold criterion.

Let a1, .
, a~ be arbitrary Constants. It suffices to show that

k
(5.1) a. Y(t~) is asymptotically normal.

j=l ‘~

________________________________________________ - —~~~~~-. — -~~~-—~~--‘-~~~~~~~~~~ —-
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To Simplify the notation, we write

u. = F
1(t~)~~ i =  1, “~~,k.

Then

(5.2) 
~~~~~~ 

a~ Y(t~) = 

j~l 
a. 

i=l ~~~ 
[I(x

~~ ~~ u~) - F~~ (u~)]1

i=l j=l 
a~ LI(x~~ ~~~ u~) - F .(u.fl).

Let a. = ______ . Observe that

(5•3) a~~ = 0(1) in n~

Thus we can write,

k n k 
-

(5.4) E a. Y(t.) = ~~~
— E a . C E  a.[I(X . < u.) - F .(u.fl)

j=1 ~ ~ ~~~~~ 
nu 

j=1 ~ nu

In (5. 4 ) ,  observe that by (5.3) , each random variable
k

a . E a [I(X .<u .)-F .(u.)]nu~~~1 j flu— 3 nu j

is bounded. -

Let

(5 .5) = a
~i 

Var c •Z)~ a~ [i(x~1 ~~~ u~) -

and

2 ~ 2(5. 6) 
~ fl = E

u= 1
k

Then by the bounded Liapunov theorem , E a . Y(t.) is asymptotically
2 j=1

normal provided ~~ — + ~~; if not, it is degenerate. lii any event, 1 (t) is

asymptotically normal, possibly degenerate. We shall examine degeneracy

more closely in section 8.

j 
—--~ —--- — - - -——— -~~~----——---- —~~- --~—- -~~- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ______
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6 . Asymptot ic Normality of Cer tain Stochastic Integrals of the

Processes X (t) and y (t).

In this section we consider the stochastic integrals X and I given by

(6 .1) X
n 

= 2 s~ S0 x~(t)  cp ’(t) dC(t)

and

(6 .2) Yfl = 

~~~ 

Y~(t) ~ ‘(t) dt

where

(6.3) c( t )  = 

~ 

C~~ F .  (F~~ (t))

and cp is a known function.

In the next theorem we obtain bounds for the variances of X and In n
This in turn will enable us to prove the asymptotic normality of S def ined

j
~ (2.1). The variance bound for I is also of independent interest because

it gives a condition on for the process ~‘(t) y (t) to possess kernels of

the so-called Hu bert-Schm idt type , uniformly in ri .

Theorem 6.1. Let x~(t) ,  Y (t) and their corresponding integrals X and

y be as defined. Let the followinp conditions hold:
_ _ _ _ _  —— _ _ _ _ _ _  _ _ _ _ _ _ _  ——

C .ni 1(a) max = o(—)
l<i<n 5n ~fn

(b) there exists ~ > 0 such that for some K 
(generic)

~p ’( t ) I  < K ( t ( 1  - t))6~3/2, 0 < t < i.

Then

(6 . 4) Var <0 (1) [J1 I~ ’( t ) I  (R~(t, t))
h/2dt]

2 
<~~~ ~~~~~

and

(6 .5) Var < 0(1) 
[J I~~~~~

’ ( t ) t  (K~ (t , t))h/2dt32 <~~~ ~~~~~ 



-~~~~~~~~~ - - - - -
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In (6 .8) observe that,

0 < Fni
(% F~~ ( t ) )  < a.

and

0 < 1 - F~1(F~
1
(t) < 1.

Thus -

(6 .9) R~ (t , t) < 0(1) 
~ ~ F .(F

1
(t ) )  = 0(i)t

and

(6 .io ) h~(t, t) < 0(1) ~ E [1 - F~ .(F~~(t))] = 0(l)(l - t).

Also,

(6 .11) $ (R (t , t))h/2l~~ (t~dt

= 

~1/2 
(R (t t))’121~ ’(t~at + 

$

1
(R~(t, t))

l/2
~~ i(t~dt

First consider -

(R (t, t))h/~~,(t~dt) < 0(1) ~~! tV2 K[t(l - t))~~~’2dt

- < K  $ to_i (1)6 3/2dt = ~~ ~~~~~~~

using (6.9) and assumption (b).

Similarly, using (6.10) we get

j
i 

~R (t , t ) I u/2 
I~~I ( t ) I d t <~~ 23’2_26 .

1/2 ‘~

Combining the two, we have (6 .4) . The -proof of (6 .5) is similar.
We are now in a position to prove the following theorem.

Theorem 6.2. Let x~(t), Y~(t), x~ and 1 be as defined earlier. Let

the following conditions be satisfied:

(a) lim E(X (t )  X ( t ) )  and lim E( Y ( t )  Y ( t ) )  exist and also

finite for almost all t.



r - -- -
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I~nu I 1-(b) ~~ = o(-~-) .
l<i<n n 4n

(c)  ~~‘(t)~ < K (t(i - t) ) 6 3/2 for some ~ > 0 and a generic constant K.

Then, given c > 0, there exist Gaussian random variables X and Y and a

~~~itive integer n0 
such that, n> n0 entails

(6 .u2) J~x~ - <

and

(6 .13) - < C .

Remark. Condition (a) can be replaced by lirn K (s, t) = K(s, t)

where K~(s, t) = E(X (s) X~(t)) and condition of corollary 4.2 for Y~(t).

Then it follows from Shorack (1973) and our corollary 4.2 respectively

that X~(t) and Y~(t) converge in L~ to Gaussian processes X(t) and Y(t).

We examine these conditions more closely in section 8.

Proof of Theorem 6.2. Consider 1 (t). By theorem 4.1 (or

corollary 4.2) and theorem 5.1, Y~(t) >~~~ 1(t) where 1(t) is Gaussian with

kernel

(6.14) R(s, t) = linh R~(s, t)
n-.+~

= u r n  ~~ ~~ C~~ (F~~(F~~(s))(l - F~~(F~~( t ) ) ) ) ,  S < t . —

n-.+~~ s i=ln

Let

(6 .15) = S0 y(t) ~‘(t) dt.
Var y = $ J cp’ (s) cp’(t) R(s, t)ds dt

< ( ~~ ~~‘(t)~ (R(t ,

= ($~ u r n  f~~ ( t ) (  (R~(t~ t)1
1/2

dt)
2

0 n-.+~
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— < (li rnjuf $ I~ (t)I (R~ (t , ~) )~‘2dt)
2 
< +

Observe that by theorem 6 .1, Var In is finite uniformly in n.

Thus

- = ii $~ 
(~~ (t )  - Y ( t ) )  ~~(t)dtI~

~ 
$~ II~~

(
~
) - Y(t)ll ~p ’(t)~dt —

~~~ 0 as n - +

because 1IY ~(t) - I (t) I I lcp ’ (t )f  > 0 and is dominated by the integrable

sequence ,

(III~(t)II + III(t )I1  ) ~~
‘ ( t)

Thus,

Ilyn - ~1I 
< e for n sufficiently large.

The proof of IPç~ 
- XII < C is similar. X can be taken to be ,

= 
1 $ X(t)  p ’( t )  dC(t)

where X(t)  is Gaussian with K(s, t) = lirn K (s, t) andn

c(t) = C . F .(F~~(t)).

7. Asymptotic Normality of Simple Linear Rank Statistics.

We are now in a position to prove the asymptotic normality of the

statistic, S , defined in (2 .1), namely

n R .
s~ = E C .  ( flu )

u= 1

We make the following assumptions:

(a) I ’~ t I  < K(t(1 - t)) 6 1~~12 , i = 0, 1; K , 6 being generic constants.

- - - - -~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~ --
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(b) X (t) and y (t)  satisfy condition of theorem 4.2 (or

corollary 4 .3).

I C . ’flu 1(c) max l’2 =

l<i<n (Var s~) “

We then have the foflowing theorem:

The orem 7.1. - Let the independent random variables X 1, “ , X~~ with

continuous distribution functions F , ~~~~~ F be such that conditionsni n n —
(a) , (b),  and (c) above are satisfied. Then there exists a Gaussian random

variable S with mean 0 and variance 1 such that

S -~~5t

(7.1) 
~ /2 —> S in probability, Var S ~ 0,

( V a . r S ) ’

where

(7. 2) = $ ~(t) d C(t) ,

c(t) = E C .  F .(F ~~ ( t ) ) .

Further, variance of S~ can be replaced ~~ the approximate variance,

‘1 n
(7.3) s~ = E Var A .(X 

~ 
= ~~ 2

• :1=1 flu nu 1=1
where

fi
(7. 4) A 1(x) = ~3 (C . - C .)$ (I(x < y) - F 1(y))cp ’(F (y))dF .(y).

3=]. -~~~

Proof. We can express the statistic S as

(7.5) s~ = $ ~~~~~~ H~(t)) 
• dC~(t)

where

(7. 6) c~(t )  = 

~ 
C . I(x~1 < F~~( t ) )

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

H 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - - - - ~~ ——- •~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ - - - - _______________________
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( 7.7) H ( t )  = 

~ i~ 1 
I(X~~ < F

1 
c)).

It is easily verified that by linear approximation, S~ is expressible

as

(7.8) S
fl

= p + B
~~~

+ B 2N + D
~~~ + D 2N + D

where~~~ is as in (7. 2 ) ,

(7.9) B~~ = J~ 
cp(t) d(C~(t) - C(t))

(7.10) B2~ = $~ 
(H~(t )  - t) cp ’( t)  dC(t)

(7 .11) D~~ = ;~i
i $~ 

H~(t) cp ’(t )  dC(t)

(7. 12) D2~ = $1 (H~(t) - t) ~ ‘(t)  d( C ( t )  - C ( t) )

(7~’3) D
3 

= $~ 
(~ (—~~ H (t) ) - 

~(t) - (—~~ H (t)  - t)  ~ ‘(t)) dC ( t ) .

We will show that,

( I)  I~~I < ÷ ~~ ,

(i i)  L (B1~ + B2 ) converges in probability to a normal random variable.

(iii) D1~ = o ( s ~ ) ,  I = 1, 2 , 3.

The following inequalities are immediate .

( 7.14) J c~ (t))  < n max J C . ~ }{ ( t )

( 7.15) I C ( t) I < n max J C J  F~( t) .
l<i<n

Thus ~~~ ~ I~ ~~~~~~~~~~~~~ 

I C~~I .

~~~ 

J1 cp (t)  E dF .( F (t ) )

< n max ~C J1 J~p ( t ) I dt  < + ~ by assumption (a) . This proves (i).
u n  ~~ 0

L. I - —S—- ~~— — — —---------—
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Proof of (ii ): Consider B~~ = $1 ~p ( t )  d(C~ (t )  - c(t)).

Integration by parts yields ,

(1.16) B~~ = f C ( t )  - C ( t ) )~~(t) - ~ ‘(t) (C~(t) - c(t ) )dt .

Claim: 
~~~~ (c~( t)  - C ( t ) )  ~ ( t )  ) 0 in probability as t _

~ 0 or 1.

Because an argument similar to that in the proof of’ Theorem 6 .]. yields

(7. 17) Var ~~~t)~~~~~t) - C(t ~~ ) < 0(1) mm [t ~
2
(t), (i-t) ~

2
(t)]

< 1(2 
mm [t 6(i-t)~~

1
, t~~

6(i-t)6),

+ 0 < t < 1 which proves the claim.

Next , observe that ~~~
— (C~(t) - c(t) )  = Y~(t) and~[n(H (t) - t) = X (t) .

Hence,

B
and

5 n
n

B
- ?n

5 nn
where X~ and have been defined in the preceding section .

By theorem 6.1, for each ~ > 0, there exist X and Y Gaussian such that ,

)IX~ 
- XJ) < c/2 and )jy~ - 1)) < e/2.

Thus , II (X~ 
- Y~) - (X - 

~)II < € .

It remains to show that X - I is Gaussian. We can write

z~(t) = X~(t) - Y~(t) .
By rearranging terms of X~(t) and 1 (t), Z~(t) can be written as

±~~~. 

(.L. - . ) ~i(x . < F~
1( t ))  -

- - - - -~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -• -. -~~~~~~~~~~~~ - - - -•---~~~~~~ - -- -~~ _ _
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2].

and conditions of the bounded LiapuPov theorem are satisfied . Thus z (t)

is asymptotically Gaussian.

Further , X~ - is a linear mapping on Z~( t )  and since ) - y is the

limit of X~ - Y~, must be Gaussian. This establishes the asymptotic

normality of X~ -

We shall examine the behavior of X - Y more closely in section 8.

This proves ( ii) .

Here we have taken Sn = Var(X~ - Y
b). Later we find an approximation

for s1~.

Proof of (iii): We shall simplify the notation by writing x = F~~(t) and

H~(X) = 
‘1i=l 

i(X 1 < x )

C (x) = .1~ c . I(X < x )n n
~_ 1 nu n u —

i n
F (x) = —j’ F . (x )n nu= .L fl u

C(x) = C 1 F .(x)

= (n+1)s~ f~~~
H~(x) ~p ’(F (x)) dC (x).

Hence

(7.18) 
~~~ 

I~ ,
‘(F (X .) ) c I  ~ 

~ ~~i 
IV nj I

( as C~ (x) assigns measure C~~ when x = X . and since H (x) < 1).

Where,

(7.19) V~1 = ~~.1 ~ ‘(F~(X .)).

Then, it suffices to show that

~ i~1 
IV~1I 

—
~~~ 0 in probability as n —

~~~ + ~~~ .

I

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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This follows from “particular case ~~~~~~ Lo~ve ( 1963) , p . 241, if’ we show

~ E~V . 1~that ~~ < + ~~~~, uniformly in ri for some 0 <a < 1. Take
i=1 n

a = 2/3; then -

• 2/3 n Ic I
2
~3

i~1 n
21~
’3 = 273 2/3 

E (F (X j (1 - F ( X . ) ) ) /3(6-3/ 
)

I C ~2/3 
____

i~~~n ~2,#’3 
~~~~ ~~i ~~ 

(F~(x)(1 - F (x)))2°!~~’ 
~~~~~~—— n

= 0(1) 
~~ i=l  ~~ 

(F (x) (1 - F (x ) ))
26/3

~~ dF .(x)

= 0(i) $~~ (F (x) (1  - F
n(x)))

28/3_1 
dF~(x) < + uniformly in n~

We have used the fact
C . 2/3 

____
flu 1max F~—I = 0( 

l73~~~i<i n n n

Thus D = o ( s )in p ri
Next consider,

D2~ = $~ 
(H(x) - F~(x)) ~ ‘(F~(x)) d (C (x) - C(x)).

Note that, given € > 0, 0 < 8 ’ < 1/2 , there exists a constant C (€, 6’) such

tha t, -

H (x) — F (x) I C~ 
‘

(7. 19) P( sup n 
‘ l’2 > \C~ 6 1 ) < ~~X (F n(X) (1_ F n (X)) ) 8 - 

‘[n

Thus on a set of probability > 1 -

~iT

_ _ _  -~~ -~~~ -~~~~---- - - _— •-—- --—-- --••~~~~~~~~ - -~~ - - - -~--—— -~~~~~~~~~~~



- 23

~H (x) - F (x)I I~’(F~(x))l 
~~~~~~~~~~~~~~ o ’) 

(F (x ) ( l  - F ( x ) ) ) 6*~~

where ~* 6 - 6 ’ and. 6’ < 5 is chosen.

Thus it suff ices to show that ,

(7.20) ~
‘) 

J~~~(F~(X)(1 - F (x)))&*~~ d(C~(x) - C(x)) —~~~ 0

in probability.

We use the Liapunov criterion for degenerate convergence , (p. 275,

B(i), Lo~ve (1963)),

~ $~ 
(F~(x)(1 - F~(x)))S*~~ d C

n(X)s n  —~~~

Let 

C~ (F(X~~)(l - F~(X~1
) ) ) S*_l.

‘ I n C .
(7.21) V~1 = (F (X .)(l F(X .)))5**

Then,

(7. 22) 
1

L. E c~1 (F~(x 1)(l 
-

n S i=1n
n

=~~~~ ,:~ vn 
=~~ 

flu

It remains to show .
~~~ E (V . - E v~1) —~~ 0 in probability. This will be

done if’ we show that for some a > 0,

(7. 23) 
~~~ i~1 

EJv .1
a÷l 

> 0. 
•

We choose an a > 0  such that , (1 + a)(~* - 1) > -1. (I.e., 0 <a < ~~~
Then 

~~~ ?‘ EJV .~n u= 1
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‘I~ maxIC .I li
~ 

-

= o(-~~) 
~ ~~~~~~ 

s:cFfl
X
~
1 - F (x)))~~~~~~5*~~) dF .(x)

= o(~ ) $~~~~~(x)(1 - F~(X)))
(1 (8~~~ dF (x) -~ ~ as n ~ + ~ 

•

because the integral is bounded uniformly for all n. This proves (7.23).

Again we have used the fact

max I C .I / s  = 0(1) .
l<i<n

This establishes D = o (s ). Consider,2n p n

D
3~ = 

~~~ 
H~(x) ) - p(F~ (x ))  - (

~~ H~(x) - F~ (x) ) 
~~

‘(F n( X ) ) J d C (X)~

We note the following: with

(7. 24 ) C3 =

it suffices to prove

(7. 25) C
3~~= o (l/[n) .

Observe that

(7.26) I C 3~1 < 0(1) 5_ j
~~ H~(x)) 

- ~ (F~(x) )  - 

~~ 
H~(x) -

- F (x)) cp ’(F (x))IdB (x)

because of the fact 

.

• max J—~- J = o(—) .
• l<i<n s ‘4n

• —— n

4

_ _ _   _ _



~~~~~~~~ - - ~~~~~~~~~~~~~~~~~~~ - - - - - - - -

- :  •
~~~ 25

The proof that the right hand ~de of (7.26) is o(~~ ) can be found in

Pun and Sen (1971) , pp. 401-405. This proves theorem 7.1.

Variance Computation: Since by (ii) D1~ = o(s~ ) ,  i = 1, 2, 3, we can take

s to be the variance of B~~ + B2 .

In order to simplify our notation, we write y = F~~(t). Observe that,

c(t) = 

j~1 
~~~ F . (F~~(t)) = 

~~~ 

C~~. F .(y) = C(y), say.

With these transformations, we can write

(7.27) B~~ + B2 = 

~ ~~ 
( i(X 1 < y )  - F

~~
(y)) ~ ‘(F~(y)) dC(y)

- j
~~ j~i 

C . ( i (X . < j )  - F~~(y)) ~ ‘(F (y)) dF~(y)

n
= ~ A .(X .)flu ra
1=1

where

= 
~~ ~~~ < y) - F

~~
(y)) ~ ‘(F~(y)) dC(y)

- c~. S~ 
(I (x  < 1) - F .(y)) ~ ‘(F~(y)) 

~~~~~

= 

~ 1~. ~~~ 
<y) - F~~~~~(~~~ ))  ~ ‘(F (y)) dF .(y)

- 

~ j=l 
C~~ < y )  - F 1 (Y) ) p ’(F (y)) dF~~(Y).

Thus ,

- - — —- _  —--—— -
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( 7.28) A~~(x)  = 

~=l 
(C~~ - C~1) $~~i~~ ~ 

y) - F~~(y)) (p ’(F (y) )dF .( y) .

Thus, we can express Bin + B2n as the sum of independent random

variables, A~~
(X

~~
) .  If we write,

s~ . = Var

we can then take
2 ~ 2
s = E s . .

fl . nu
i=1

8. Asymptotic Degeneracy of Sn:
From the expression (7.8) for S , namely,

S = u  + B  ÷ B  +D +D + Dn n in 2n in 2n 3n

it is clear that we need only examine the limiting behavior of the terms

B
1~ 

+ B2n • With the help of the expression (7.4) for A .(.) we can express

B
in 

+ B2 
as a sum of independent random variables which would enable

standard tools from stability theory to be used. But a glance at the

expression for A .(’) suffices to convince us of the impracticality of the

situation. We shall adopt a different procedure using the variance

inequalities proved in section 6.

Clearly, s are only normalizing constants arid we can replace C
~1~/s~

by C . themselves but now with the condition ,nu

(8.1) max IC~~I =

1~i~n 
.4 n

Then,

(8.2) X = 

~~ $ x~ (t)  ~ ‘(t )  dC(t)

L- .
_ _ _ _  _
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(8.3)  = $ 1 (t) ~ ‘( t )  dt

where now

(8.4) Y~(t) 

~~~ 

c . (I(x~ 
<F~~(t)) -

In view of (8.1) , y (t)  is asymptotically either Gaussian or degenerate .

We next examine conditions for the degeneracy (or non-degeneracy) of

X~ - in the limit .

Assuming that the distribution functions F .  possess densities

F’ . = 1’ ., we can expressnu nu

1 C’(t)(8 . 5)  Xn = $~ ~
‘(t) 

‘I 
x (t) dt

where

(8.6) C’(t) = E f
~~

(F
~~
(t)))

~~ 
(
~~ 

C~~ f~~ (P~~(t))).

We then have the following proposition.

Proposition. Let condition (8.1) be satisfied. With X and In defined

~~ (8.2) ~~~ (8.3) respectively, S~ = X~ - is asymptotically degenerate

whenever

(8.7) lim ~J (C’(t) - c~ )
2 
F~~(F~~(t))(l - F

~m
(F
~~
(t))) = 0

n-.+~ u=l

aiiiost everywhere ~~ (0 , 1).

It is , of course, assumed that and 
~p ’ 

satisfy the same conditions as

before.

Proof. It is easy to verify that



—
‘I,

.5

28

= - = $ ~ ‘(t) 
~~~~~~ 

~~~~ 
- C~~ ) ) I (x . < F ~~ ( t ) )

- F ,(F~~(t)))dt .

Hence

1 1  n
Var s~ = S

~ 
$~ 

p ’ ’(t) ~~ 1
C (ti 

- C i
2
~~ ~~ ‘~~~ s) A F~~(t)) -

- F .(F 1( s ) )  F .(F~~ ( t ) )]  ds dt

~ 1$ I~ ’(~
) I (

~~ I - C~~~
2 

F~1
(F~~ ( t ) ) ( 1 - F111(F;

1( t ) ) ) ) 1/2dt)
2
.

By theorem 6.i, (variance inequalities) the last quantity above is

uniformly bounded in N . Now it is easily verified that (8.7) entails

Van S~ —
~~~ 0. This completes the proof .

Remark: A consequence of condition (8.7) is that whether S is asymptotically

degenerate or not depends very heavily on the underlying distributions and

it may not be possible to secure nondegeneracy by any choice of the

regression constants C~~ and the score generating function q’. The di fficulty

is that the so-called Kolmogorov-Smirnov bowids , namely

P(sup~~
_
~~~ (I(X

i < F~~(t)) - F .(F~~(t)))~ > a)

can be very small, when the underlying distributions are nonidentical. An

example following theorem 2.11.8, p. 41 of Purl-Sen (1971), illustrates this

point .

Acknowledgements: Results of this paper are based on a part of the author’s

doctoral dissertation written at Indiana University. The author is extremely

grateful to Professor Madan L. Pun who suggested this problem and provided

inspiring guidance . He also thanks Professor Victor Goodman for his help. 

—~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~~ --~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 5- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —-~~~~-



- - -~~~ -~~~~--- —

Biblic ~raphy

(13 Aronszajn , N . ( 1950) , Theory o± reproducing kernels. Trans. Amer. Math.
, Vol. 68, 337-404.

12:1 Billingsley, P. (1968) , Convergence of Probability Measures. Wiley, N.Y.

(3) Brown, M. ( 1970) , Convergence in distribution of stochastic integrals.
Ann . Math. Stat ., Vol. 

~~~~~~~~ 
829-842 .

(4) Chernoff , H. and Savage , I. R . ( 1958) , Asymptotic normality and
efficiency of certain nonparametric test statistics. Ann . Math. Stat.,
Vol . ~~~~~~~, 972-994 .

[5) Goirindaraju, Z., LeCam, L. ,  and Raghavachari , M. (1966), Generalizations
of theorems of Chernoff and Savage on the asymptotic normality of test
statistics. Proc . Fifth Berkeley ~ ymp. Math . Stat . Prob ., Vol . 1,
609-638. 

—

(61 H5~jek , J . (1968), Asymptotic normality of simple linear rank statistics
under alternatives. Ann. Math. Stat., Vol. ~~~~~~~, 325-346.

(7) Hoeffd.ing, W. (1973), On the centering of a simple linear rank
statistic. Ann. Stat., Vol. 1, 54-66 .

(81 Koul, H. L. (1970), Some convergence theorems for ranks and weighted
empirical cumulants . Ann . Math. Stat ., Vol . 41, 1768-1773.

[9) Koul, H. L . and Staudte , R . G. ( 1972), Weak convergence of weighted
empirical cwnulatives based on ranks. Ann . Math. Stat ., Vol . 43,

- 832-841.

[101 Lo~ve, M. (1963), Probability Theory, 3rd ed. Van Nostrand Press, N.Y.

[UI Parzen, E. (1959), Statistical inference on time series by Hu bert space
methods, I. Time Series Analysis Papers, Holden-Day, San Francisco.

t12] Pun , M. L. and Eajar am, N. S. (1977), Asymptotic normality and conver-
gence rates of linear rank statistics under alternatives. 1. of’ Stat.
Planning and ~~~~~~~~~ (to appear). -

[13] Purl, M. L. and Sen, P. K. (1969), A class of rank order tests for a
general linear hypothesis. Ann. Math. Stat., Vol. 40, 1325-1343.

~.l41 Pun , M. L. and Sen , P. K. (1971), Nonpa.rametric Methods in Multivariate
Analysis. Wiley, N. I.

(15] Pyke, R. and Shorack, G. (1968) , Weak convergence of’ a two sample empirical
process and a new approach to Chernoff-Savage theorems. Ann. Math. Stat.,
Vol . ~~~~~~, 755-771.

_ _ _  - - ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~—~-- -~~~~~~~~~ --~~~~~~~ ~~~~~~~~~~~~~~~~ —~~~~~~~~~~~~~ -~~~~-— - -



[16) Shorack , G. ( 1973) , Convergence ~‘f reduced empirical and quantite
processes with applications tc: functions of order statistics in
the non-i .i .d . case . Ann . Stat •,  Vol. 1, 146-152 .

(17) Yo~ida , K. ( 1972), Functional Analysis, 3rd . ed~. Springer-Verlag,
Berlin-N.Y. 

- - --~~- - ----~~~~~ —— - - -~~- --~~~—- --- - —-•- _ _


